
1. Ratio of specific heats

CD

1.1 Introduction

The purpose of this lab course is to determine the ratio κ of the heat capacities Cp at constant

pressure and Cv at constant volume for various gases. To do so, we will apply two different methods.

In the first experimental part κ will be measured for argon, nitrogen and carbon dioxide out of

the oscillation frequency of a piston which floats over a gas volume (method of R”uchardt and

Flammersfeld). Thereby a very common experimental approach is made use of, namely the deter-

mination of a physical quantity by measuring a time. In general, a precise time measurement is

already possible with relatively small effort, therefore this approach usually leads to large measure-

ment accuracies.

In the second part of the experiment κ of air shall be determined with an alternative method of

Clément-Desormes and Desormes.

The secure dealing with highly pressurized gas canisters in this experiment will be of use for other

physical experiments as well.

1.2 Theoretical part

a) First law of thermodynamics

In general, when thermal energy is being supplied to a system from exterior, part of it well be

stored as internal energy and part of it will be released as work to the surroundings. The first law

of thermodynamics expresses this empirical fact together with the principle of energy conservation

and reads

δQ = dU + δW, (1.1)

where

δQ = supplied thermal energy,

dU = change of inner energy,

δW = provided work.
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2 1. Ratio of specific heats

The equilibrium state of a thermodynamic system is being characterized by various state variables,

e.g. the pressure p, the volume V and the temperature T . Those are connected among themselves

by an equation of state. In the most simple case this is the equation of state of an ideal gas. For

n moles of an ideal gas it becomes

p · V = n ·R · T, (1.2)

where R = 8.31 J Mol−1 K−1 is the universal gas constant.

b) Isothermal and adiabatic processes of ideal gases

Depending on the outer circumstances that occur during the process one distinguishes different

fundamental processes of which two are of concern for this experiment.

• A process is called isothermal in case it runs at constant temperature. For ideal gases one

gets, according to Eqn. 1.2, the isothermal equation of state

p · V = konstant. (1.3)

• Changes of state for which no thermal heat energy is being fed or discharged (δQ = 0)

are called adiabatic processes. If the work done happens to be mechanical expansion of dV

against the pressure p, one can write

δW = p · dV (1.4)

and the first law of thermodynamics becomes

dU + p · dV = 0. (1.5)

c) The specific heats Cp and Cv

As molar heat we denote the amount of thermal energy which warms up 1 mol of the regarding

substance by ∆T = 1. This quantity is depending on the fact, whether the heat supply happens at

constant volume (isochor) or at constant pressure (isobar). Therefore, one distinguishes between

Cv =
δQ

dT

∣∣∣∣
V = konstant

(1.6)

and

Cp =
δQ

dT

∣∣∣∣
p = konstant.

(1.7)

If the volume is held constant during the heat supply, i.e. dV = 0, then one has δW = 0 according

to Eqn. 1.4. It follows from the first law (Eqn. 1.1), that

Cv =
dU

dT
. (1.8)
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1.2. THEORETICAL PART 3

In the case where not the volume but the pressure is being held constant, the gas expands by dV

during heat supply. Here, additional work is carried out, which has to be put up by the applied

energy. Therefore, Cp is always larger than Cv for gases and by Eqn. 1.4 one has

Cp − Cv =
δW

dT
= p · dV

dT
(1.9)

Due to Eqn. 1.2 we get dV = R
p dT and as a consequence it holds for ideal gases, that

Cp − Cv = R (1.10)

d) The adiabatic equation for ideal gases

Involving Eqn. 1.8, the first law (Eqn. 1.5) becomes

Cv · dT + p · dV = 0 (1.11)

or specifically for one mol (n = 1) of an ideal gas according to Eqn. 1.2

Cv ·
dT

T
+R · dV

V
= 0. (1.12)

By integrating this equation one gets

Cv · ln
T

T0
+R · ln V

V0
= ln

(
T

T0

)Cv

+ ln

(
V

V0

)R
= konstant (1.13)

referred to an arbitrary state T0, V0 of the gas, or

TCv · V R = konstant. (1.14)

Due to R = Cp − Cv, with κ = Cp/Cv one can write

p · V κ = konstant, (1.15)

where Eqn.1.2 has been applied, the Cv-th root has been taken, multiplied by R. Because of the

proportionality of the isobaric as well as the isochoric heat capacity to the number of particles n,

Eqn. 1.15 holds generally for arbitrary amounts of substances.

When measuring the pressure and the volume for two states, that are connected to each other via

an adiabatic process, one can determine κ from Eqn. 1.15.
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4 1. Ratio of specific heats

1.3 Experimental part

In this experiment one shall determine κ = Cp/Cv for the gases argon (Ar), nitrogen (N2) and

carbon dioxide (CO2) with the method of Rüchardt/Flammersfeld and for air with the method of

Clément-Désormes.

a) Experimental set-up for the method of Rüchardt/Flammersfeld

Serto valve

Limiter

Piston

Hole in glass tube

Ring cover

Needle 
valve

Restrictor

Woulf’s bottle

Figure 1.1: Set-up for the method of Rüchardt/Flammersfeld

The gas, which we going to investigate on, is being poured into a so-called Woulff bottle through

a long, thin tube. A cylindrical, vertical glass tube is being connected to the bottle. It features a

small drilling in the middle and holds a well fitting, slightly movable piston. Due to the incoming

gas, the pressure in the bottle raises and the piston gets elevated until it frees the drilling in the

glass tube. Thereby the pressure drops again and the piston sinks. By the use of the continuous

gas current one can maintain an undamped oscillation of the piston. Because of the fast movement

of the piston no heat exchange between the gas and the environment takes place in the short time

in which the piston performs an oscillation. Therefore, the process runs adiabatically to a very

good approximation. For the following observation we denote the following symbols:

m1 = Mass of the piston [kg],

d = Diameter of the piston [m],

V = Volume of the Woulff bottle,

including the volume of the glass pipe up to the drilling [m3],

b = Barometer reading [Pa],

g = Gravitational acceleration = 9.81 m/s2.
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1.3. EXPERIMENTAL PART 5

The piston in the pipe is in equilibrium, if

p = b+
4m1 · g
d2 · π

. (1.16)

When the pressure in the bottle changes by ∆p, the piston gets moved due to a force F (x) by a

distance x from the initial equilibrium position. The equation of motion for the piston becomes

m1 · ẍ = F (x) = A ·∆p = π
d2

4
·∆p. (1.17)

As the process proceeds adiabatically up to a very good approximation, one has p · V κ = constant.

Furthermore, the changes of pressure and volume, ∆p and ∆V , are small compared to the pressure

p and the volume V , such that we can write as a good approximation:

∆p

∆V
≈ dp

dV
=
κ · p
V
→ ∆p = −κ · p ·∆V

V
= −κ · p · πd

2 · x
4V

. (1.18)

Hence, Eqn. 1.17 can be written as follows:

m1 · ẍ+
κ · p · π2d4

16V
· x = 0. (1.19)

The solutions of those differential equations are harmonic oscillations with a circular frequency of

ω =
2π

ts
=

√
κ · p · π2d4
16V ·m1

(1.20)

and an oscillating period of ts = 2π/ω. Hence

κ =
64m1 · V
d4 · p · t2s

. (1.21)

Due to the fact that the gas in the pipe joins the movement of the piston, one has to replace m1 by

m = m1 +
πd2

4
· l ·

(
ρL + ρG

2

)
, (1.22)

where l is the length of the glass pipe, ρL the density of air and ρG the density of the used gas.

Therefore one has

κ =
64m · V
d4 · p · t2s

. (1.23)

b) Carrying out of the experiment following the method of Rüchardt/Flammersfeld

Before starting the measurement, you should check the following points together with the assistant:

1. Are the rubber clasps plugged into the bottleneck of the Woulff bottle up to the affixed

markers?

2. Is the glass tube standing vertically?
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Pressure reduction valve
Valve

Spindle

Pressurizing
valves

Gas bottle

Figure 1.2: Gas bottle and valves.

3. Is the piston able to oscillate freely or is it stuck?

4. Is the serto valve closed completely?

Warning:

• The needle valve must never be closed completely! (Damage of the needle valve).

• The piston is very sensitive to mechanical damage.

Due to danger of accident, the following operations 1 to 5 and 7 are only allowed to be executed

supervised by the responsible assistant (cf. Fig. 1.1 and 1.2).

1. Slowly open the gas bottle valve, with the pressure reducing valve being relaxed and the

distributor valves being closed.

2. Slowly screw the spindle on the pressure reduction valve inwards, until the low pressure

manometer displays a pressure of 0.4 bar. Flush the pipes shortly.

3. Connect the pressure reduction valve with the serto valve and the needle valve with tubes.

Open both distributor valves. Open the needle valve for approx. 30 seconds completely, then,

open the serto valve just a little bit. As a result, the piston in the glass tube gets elevated

and can be removed with the confining ring.

4. Open the serto valve completely and flush the bottle for about 30 seconds. Close the serto

valve, reinstall the piston and secure it with the confining ring.

5. Adjust the needle valve and the cover ring at the glass tube in such a way, that the lower

edge of the piston oscillates as symmetrically as possible around the drilling in the glass tube.

The amplitude of the oscillation should account for 30 mm.

6. Measure the oscillation period ts as an average over 10 series, each of which contain 20 oscillations.
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1.3. EXPERIMENTAL PART 7

Table 1.1: Details for the experimental set-up after Rüchardt/Flammersfeld

Volume of bottle 1 V = (5.420± 0.005) l

Volume of bottle 2 V = (5.595± 0.005) l

m1 = 5− 10 g
Mass of the piston

(precise information are written down at the experimental spot)

Inner diameter d = (14.00± 0.02) mm

and length of the glass tube l = (170.0± 1.0) mm

7. After completion of the experiment, close all pressure bottle valves and relieve the pressure

reduction valves.

8. Read the pressure value from the precision barometer in the lab. As usual in meteorology

the barometer is calibrated for the altitude and the reading refers to sea level. Calculate the

absolute pressure in the lab using the following formula for the altitude of h = 473 m:

p(h) = p0 ·
(

1− 6.5h

2.88× 105

)5.255

, (1.24)

where

p(h) = pressure at altitude h [Pa],

p0 = pressure at sea level [Pa],

h = altitude [m].

9. Calculate κ of the three gases with the help of Eqn. 1.23 and estimate the error on κ. The

relevant parameter are arranged in table 1.1.

c) Experimental set-up for the method of Clément-Desormes

With the help of bellows one can pump air into a gas container (see Fig. 1.3).

The gas container is connected to a simple fluid manometer. By shortly opening the valve one can

reduce the pressure in the container.

d) Carrying out of the experiment following the method of Clément-Desormes

The quantity κ is being determined in three steps.

In the first step the molar volume of the initial state is being determined. To do so, you will pump

air into the gas container. After the air has adopted ambient temperature (wait for approx. 5-10

minutes), determine the associated state variables for this condition:

Pressure p1 = p0 + ρFl · g · h1, where:
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8 1. Ratio of specific heats

Bellows

Valve

Gas 
container

Manometer

p0

p h

Figure 1.3: Experimental set-up for the Methode von Clément-Desormes

p0 = External pressure,

ρFl = 1.0× 103 kg m−3 = Density of the fluid in the manometer,

h1 = Height, indicated on the manometer h,

Volume V1 = V = Volume of the gas container,

Temperature T1 = T = Room temperature,

Number of moles n1 =
p1 · V
R · T

,

Molar volume v1 =
V

n1
=
R · T
p1

.

In the second step, one lets the trapped gas in the container expand adiabatically. For this purpose,

let some gas escape the container by shortly opening the valve, such that the head of liquid in the

manometer drops for about 5 to 10 cm. The gas is in a new state (2) immediately after the closing

of the valve, which is characterized by the following quantities:

Pressure p2 = p0 + ρFl · g · h2
Volume V2 = V = Volume of the gas container

Temperature T2 = n

Number of moles n2 = unknown

Molar volume v2 =
V

n2
= unknown

For the exact determination of h2, check appendix a)!

The new number of moles n2 and the temperature T2 is not known a priori. The equation of state

p2 · V = n2 ·R · T2 yields only the product of these quantities.

In the third step, the molar volume of the final state will be determined. In order to do so, wait

until the remaining gas has adopted room temperature once more. For this state (3) one has:
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1.3. EXPERIMENTAL PART 9

Pressure p3 = p0 + ρFl · g · h3
Volume V3 = V = Volume of the gas container

Temperature T3 = Room temperature

Number of moles n3 =
p3 · V
R · T

Molar volume v3 =
V

n3

Since no gas escaped in the transition between states (2) and (3), one has

n2 = n3 =
p3 · V
R · T

(1.25)

and therefore

v2 = v3 =
R · T
p3

(1.26)

Finally κ shall be determined. For the adiabatic transition from state (1) to state (2) Eqn. 1.15

holds, so

p1 · V κ
1 = p2 · (V1 + ∆V )κ, (1.27)

where ∆V (outside the container) is unknown. For the molar volume in state (2) one has:

V1 + ∆V

n1
=
V2
n2

= v2

and thereby

p1

(
V1
n1

)κ
= p2 ·

(
V1 + ∆V

n1

)κ
= p2 · vκ2 . (1.28)

After the extension with (RT )κ for the states (1) and (3) and with Eqn. 1.25 and 1.26 one gets:

p1 ·
(

1

p1

)κ
= p2 ·

(
1

p3

)κ
. (1.29)

Thereby, with the reference pressure p0, it holds that

κ =
ln
(
p2
p1

)
ln
(
p3
p1

) =
ln
(
p2
p0

)
− ln

(
p1
p0

)
ln
(
p3
p0

)
− ln

(
p1
p0

) . (1.30)

On the other hand, it holds that

pi = p0 + ρFl · g · hi, (1.31)

such that

κ =
ln(1 + ρFl·g·h2

p0
)− ln(1 + ρFl·g·h1

p0
)

ln(1 + ρFl·g·h3
p0

)− ln(1 + ρFl·g·h1
p0

)
. (1.32)

With the power series expansion ln(1 + ε) = ε− 1/2 ε2 + . . . it follows for ε = ρFl·g·hi
p0

� 1 that

κ =
h2 − h1
h3 − h1

. (1.33)

Therewith, κ can be calculated only with the values from the height measurement of the manometer.

The temperatures and the molar volume are not need to be known.
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10 1. Ratio of specific heats

e) Exercises

• Verify the assumption ε = ρFl·g·hi
p0

� 1.

• Calculate the amount of moles of gas inside of the container.

• Compare the experimentally acquired values from Eqn. 1.23 and 1.33 with the expected values

after Eqn. 1.38 (appendix b) and literature values for κ at 20 ◦C:

– κ (Ar) = 1.668, κ (N2) = 1.404, κ (O2) = 1.404 and κ (CO2) = 1.304
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1.4. APPENDIX 11

1.4 Appendix

a) For the determination of pressure changes at the adiabatic expansion from

state (1) to (2)

Due to inevitable oscillations of the fluid manometer, a direct read off of the pressure in state (2)

is not possible until quite some time after the escape of the gas. At this time, the gas has again

warmed a little bit, such that the transition can’t be assumed to be adiabatic any more. In the

following it is shown, how one can extrapolate backwards from subsequent measurements to the

correct initial value h2.

Open the valve at the time t = 0 shortly and read off the height ht of the head of liquid in the

manometer at times t = 10, 20, 30, 40, 50 and 60 s as well as the final value h∞ after 5 and 10 minutes

(h∞ = h3).

Figure 1.4: Measurement of the height as a function of time

¿From the graphically represented measurements one could basically directly extrapolate to the

searched value h0 = h2 at time t = 0 (see Fig. 1.4). Nevertheless, the extrapolation is easier and

produces a more accurate result if a representation can be found, where the pressure history is

described as a straight line.

For that to happen, one makes the obvious assumption that the warming per second is proportional

to the difference in temperature between the gas in the container and the environment, i.e.

dT

dt
∝ T − T2 = T3 − T2. (1.34)

Since for an ideal gas after Eqn. 1.2 at constant volume on has p ∝ T , it holds for the temporal

change of the manometer read-off h(t) (k = constant) that

dht
dt

= k · (h∞ − ht). (1.35)

The solution of this differential equation for ht is

h∞ − ht = (h∞ − h0) · e−kt. (1.36)
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Finding the logarithm of this equation yields

ln (h∞ − ht) = ln (h∞ − h0)− kt, (1.37)

where all heights have to be divided by the same (arbitrary) reference value (e.g. 1 cm) before

taking the logarithm.

Therefore, plotting ln(h∞− ht) instead of the measured values as a function of time t, one expects

a linear connectedness.

Figure 1.5: Linearisation and extrapolation for t = 0.

Fit the best straight line through the points and extrapolate it until reaching t = 0. From the

section of the abscissa ln(h∞ − h0) determine the desired initial value h0 = h2.

b) On the gas kinetic interpretation of κ

Since no forces act in between molecules of an ideal gas, no potential energy can be stored. There-

fore, Cv corresponds to the increase of kinetic energy of one mole of gas for an increment of

temperature of 1 K.

According to the equipartition law, for each mole of the gas an energy of 1
2 R · T falls on each

(fully excited) “degree of freedom” of the gas molecules. The number f of degrees of freedom is

determined by the possibilities of translation, rotation and eventual oscillations of the concerning

molecules.

Having R = Cp − Cv, it follows for ideal gases with f degrees of freedom that

κ =
Cp
Cv

=
Cv +R

Cv
=

f
2 ·R+R
f
2 ·R

= 1 +
2

f
. (1.38)

Since the angular momentum L can only embrace certain, discrete values (quantum mechanics),

namely L = n · h2π , the associated rotational energy is quantised as well:
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Erot =
L2

2 J
=
n2 · h2

8π2 · J
(1.39)

Here, h is the Planck’s constant and J the moment of inertia of the molecule.

a)

b)

ω

J  large  Erot  small

J  small Erot  large
ω

Figure 1.6: Moments of inertia and degrees of freedom of a 2-atomic molecule

At room temperature, the average kinetic energy is too small to excite rotations such as shown

in Fig. 1.6a). Hence the three degrees of freedom don’t play a role for one-atomic gases and for

linear molecules the rotation around the connecting axis can be neglected as a degree of freedom.

Similar considerations hold for the degrees of freedom of vibrations, since the oscillation energy of

a molecule is much greater than the rotational energy and therefore vibrations are frozen at room

temperature and do not contribute to the number of degrees of freedom.

For example the number of degrees of freedom for the linear CO2-molecule is composed of

f = 3 (Translation) + 2 (Rotation) + 1 bis 4 (Vibration, depending on the temperature).

In general, the number of degrees of freedom under standard conditions amounts to:

• one-atomic gases: f = 3 ⇒ Cv = 3
2 R · T ⇒ κ = 5

3

• two-atomic gases: f = 3 + 2 ⇒ Cv = 5
2 R · T ⇒ κ = 7

5

• three-atomic gases: f = 3 + 3 ⇒ Cv = 6
2 R · T = 3R · T ⇒ κ = 4

3
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